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Abstract 

Telepresence robots allow users to freely explore a 

remote space and provide a physical embodiment in 

that space. However, they lack a compelling 

representation of the remote user in the local space. 

We present VROOM (Virtual Robot Overlay for Online 

Meetings), a two-way system for exploring how to 

improve the social experience of robotic telepresence. 

For the local user, an augmented-reality (AR) interface 

shows a life-size avatar of the remote user overlaid on 

a telepresence robot. For the remote user, a head-

mounted virtual-reality (VR) interface presents an 

immersive 360° view of the local space with mobile 

autonomy. The VR system tracks the remote user’s 

head pose and hand movements, which are applied to 

an avatar. This provides the remote user with an 

identifiable self-embodiment and allows the local user 

to see the remote user’s head direction and arm 

gestures.  
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Figure 1: A local (left) and 

remote (right) user using VROOM 

to collaborate on a whiteboard. 

 



 

  

Introduction 

Video communication has enabled global lifestyle and 

distributed access to a range of services. However, 

traditional 2D video communication constrains our 

abilities to achieve common ground [18], maintain 

awareness and control [12,18], and share experiences 

[23]. People work around these constraints, but the 

physical and spatial limitations are inescapable. There 

are currently two ways to add physical and spatial 

experiences into video communication. The first is to 

use telepresence robots (e.g., [25,41,42]) — effectively 

video-chat-on-wheels. These are increasingly common 

in the workplace (e.g., [43]) but are not yet widely 

adopted in domestic contexts. The second is to use 

augmented reality (AR) systems in which users wear 

head-mounted displays (HMDs) to see one another as 

3D avatars in their respective local spaces (e.g., [44]). 

These avatars scale in realism from cartoonish to 

photorealistic, scale in animation from manual to 

parametric, and have some level of ‘canned’ procedural 

animations to fill in representational gaps, such as idle, 

moving, gestural, or facial animations. 

Both methods are a step ahead of traditional video 

communication, but they still have limitations. 

Telepresence robots allow for autonomous mobility, but 

they have similar limitations on conveying bodily 

gestures as traditional video communication [22] 

because users are still locked into 2D screens and 

constrained fields of view. AR systems enable 3D bodily 

views at all endpoints, and while 3D avatars are 

currently still quite crude, users can freely use large 

gestures and spatial bodily arrangements. However, an 

AR avatar cannot roam around a remote location by 

itself at any time. AR systems require a meeting 

instance with at least one person per endpoint, and 

avatar mobility is limited to the physical area seen in 

the view of the HMD at each endpoint. 

The question, then, is whether combining robotic 

telepresence with an AR avatar will provide the ‘best of 

both worlds’? To answer this, we designed VROOM 

(Virtual Robot Overlay for Online Meetings; Figures 1 

and 2). To enhance the remote user’s sense of 

immersion we provide a 360° view of the local activity 

space, and to enhance their self-projection into that 

space we provide a first-person view of their own 

avatar. To enhance the local user’s sense of co-location 

with the remote user, a full-size full-body avatar of the 

remote user overlays the telepresence robot.  

Background 

As well as enabling more distributed work and personal 

activities, improvements in video communication and 

allied infrastructure such as Wi-Fi and mobile data are 

empowering greater inclusion for people who cannot 

travel due to responsibilities, disabilities, or financial 

reasons, or those who do not wish to travel for reasons 

of sustainability or quality of life. 

Figure 2: An overview of the VROOM system. 



 

  

However, video communication is rife with inequalities. 

For example, in hybrid meetings [32], remote users are 

often restricted to the view from a static room camera. 

The lack of viewpoint control makes it difficult for 

remote users to contribute [12]. While some activities 

are not hampered by such issues, remote participation 

becomes more difficult as physicality increases (e.g., 

sketching on whiteboards or using sticky notes [10], 

referring to objects [7], or using bodily gestures [7]). 

Solutions exist in both research and products, such as 

giving users the ability to refer to objects in the other 

space [2,4,5,6,8,15], giving people richer or wider 

views into the space [11,13,35], and giving users more 

control of their viewpoint with mechanical or digital 

movable cameras or automated field of view framing 

[16,17]. However, these are acute fixes for a chronic 

problem, forever hampered by the basic architecture of 

traditional 2D video communication. 

Telepresence robots and AR systems change the nature 

of distributed presence, albeit with some limitations of 

their own. Telepresence robots (e.g., [25,41,42]) are 

remotely-controlled movable robots with a screen, 

speakers, microphone, and at least one camera. 

Telepresence robots afford physical autonomy to 

explore a remote environment and a physical 

embodiment in that remote environment [30]. Both 

remote and local users thus have places that belong to 

them in the local activity space. Usage of telepresence 

robots has been studied by researchers in collaborative 

and social contexts such as museum visits [31], 

remotely attending academic conferences [22,29], 

outdoor activities [9], and long-distance relationships 

[39,40]. Telepresence robots are still hampered by 

their obviously robotic appearance, their lack of 

physical methods for deictic indication (and, indeed, 

lack of manipulators for interacting with physical 

objects), and their constrained representation of the 

remote user on a small 2D screen.  

The field of view is critical in telepresence. The widest 

field of view is that of 360° cameras, which have been 

explored for video conferencing [13,19,20,35] and 

telepresence robots [9,11]. Viewing a 360° live video 

through a VR HMD can lead to a higher sense of 

immersion and emotional investment in the remote 

location [3], which could result in a remote user 

contributing more to, or getting more out of, a shared 

activity in that space. However, simply adding a larger 

field of view for a remote user does not provide a way 

for local users to know where a remote person is 

looking in the local activity space [35].  

Mixed reality (MR), including AR and virtual reality 

(VR), provides ways to improve the communicative 

presence of remote collaborators by showing 3D full or 

half- body avatars, which have the concomitant 

advantages of being able to represent deictic gesture 

as well as other head and bodily gestures [21,24,36]. 

However, as we noted in our introduction, the lack of 

mobile physical autonomy in a remote is a common 

limit in pure AR systems.  

Overcoming such limitations is the province of the 

Telexistence field, arising out of robotics, which 

explores immersive methods for humans to interact 

naturally in remote environments [33,37,38]. 

Telexistence and VR share three requirements: life-size 

spatiality, real-time interaction, and self-projection. 

Telexistence has explored both one-way and mutual 

telexistence [34]. Mutual telexistence research tends to 

explore the experience of symmetrical systems at each 



 

  

endpoint, but recent research has also explored using 

asymmetrical technologies at each endpoint. 

Piumsomboon et al. explored adding a mini avatar of 

the remote user to the local space, viewable through an 

AR HMD [26] and attaching a mini avatar to a 360° 

camera with a tracker, providing immersion in the local 

activity space to the remote user via a VR HMD [27].  

System Design 

We built VROOM as an asymmetrical system to enhance 

the mutual experience of telepresence for both local 

(AR) and remote (VR) users.  

Avatar Representation 

We created an avatar representing the remote user’s 

appearance. This avatar is displayed in both the local 

(AR) user’s view (Figure 3), and remote (VR) user’s 

view (Figure 4). In the local user’s view, the avatar is 

overlaid on a telepresence robot using marker tracking. 

In the remote user’s view, the avatar is seen in first-

person (shoulders, arms, torso, legs, and feet), 

mimicking the user’s view of their own body.  

The avatar’s appearance and actions are mapped to the 

remote user. A 2D image of the remote user’s face is 

mapped onto a 3D avatar’s head (Figure 5). The avatar 

is rigged to respond to the remote user’s head and 

body actions. The head pans and tilts as the remote 

user’s head does, detected by the gyroscope in the 

HMD. The head’s mouth flaps in time with speech. A 

blink animation is applied periodically. The hands and 

arms are articulated to move as the user moves 

Windows Mixed Reality controllers. Driving the robot 

triggers a full body walk animation. An idle animation is 

applied when no locomotion or arm gesture input is 

detected. The avatar’s movements in both the local and 

remote views are synchronized (Figure 6), so where the 

remote user looks or points maps to where the avatar 

looks and points. This full-body avatar is meant to 

heighten the local user’s sense that the remote user is 

present in the activity space with them. At the same 

time, the remote user’s first-person view of their avatar 

body immersed in a 360° view of the space is intended 

to heighten the sense that the remote user is present 

with the local user in the activity space. 

Local Activity Space 

Local (AR) User Interface: The local user wears a 

Microsoft HoloLens, through which they can see the 

remote user’s avatar representation overlaid on the 

telepresence robot. Pointing by the remote user is 

limited to arm gestures (Figure 7). 

Robot: The telepresence robot has fiducial markers for 

tracking [14] and a 360° camera attached to it to 

stream a view to the remote user. The markers are 

tracked by a HoloLens app to overlay the avatar on the 

robot in the AR view. In this version we used front and 

rear markers to enable to avatar to face in the same 

direction as the robot. This worked reasonably well, but 

future versions might include more markers for 

smoother tracking. We used a telepresence robot with a 

screen so that we could run a comparison between 

standard robotic telepresence and VROOM (to be 

reported in a future paper), but the screen would be 

unnecessary if all local users wore HMDs. A future 

iteration could use any driveable robot with a 360° 

camera on a pole reaching head-height. 

Remote Space 

Remote User (VR) Interface: The remote user wears 

a Windows Mixed Reality HMD. This displays the 360° 

 

 

 

Figure 3: Avatar representation 

in the local (AR) user’s view. 

 

 

 

Figure 4: Avatar representation 

in the remote (VR) user’s view. 

 



 

  

view from the perspective of the robot, as well as a 

first-person view of the avatar. The user also holds 

Windows Mixed Reality controllers in each hand. One 

thumbstick drives the robot. Standard tracking of both 

controllers animates the avatar’s arm gestures. Since 

the remote user’s hands are holding controllers, fully-

articulated hand pose is not available to enable finger 

pointing or other fine-grained hand gestures. 

Robot: We used the built-in audio and driving 

capabilities of the Beam telepresence robot. When 

using VROOM, since the remote user was wearing a 

HMD, they could not use the Beam’s visual driving UI in 

which downward-facing view shows blue lines to 

indicate the projected direction of travel. We replaced 

these in the VR view with a white arrow that was locked 

to the forward direction of the robot. 

Implementation 

VROOM was constructed largely from existing 

technologies. In the local space, we use a Microsoft 

HoloLens (version 1) AR headset, running a custom 

Unity application. This application tracks the robot and 

overlays the avatar. The avatar’s head is made from an 

image of the user’s face, using the Avatar Maker Pro 

Unity library [45], and attached to an animated human-

body model available as a standard asset in Unity. To 

track the robot, the HoloLens app uses the 

HoloLensARToolKit library [1,28] to track fiducial 

marker patterns that we printed and placed on the 

robot (Figure 8). The robot we use is a BeamPro 

telepresence robot [42]. On this robot, we attached a 

RICOH Theta V 360° camera [46], connected to a small 

laptop attached to the base of the robot. This laptop 

runs another application that streams the 360° video 

from the camera to the VR application running on the 

remote side. On the remote side, we implemented the 

VR application with Unity and using an HP Windows 

Mixed Reality headset and controller set [47] connected 

to a Windows desktop PC. This application displays the 

360° live video in the headset, and a first-person view 

of the avatar. The VR application also sends the remote 

user’s head orientation and hand position data to the 

AR application via HTTP polling. In addition, we 

implemented another application, running on the PC in 

the remote space, allowing the user to drive the robot 

using a thumbstick on one of the Windows Mixed 

Reality hand controllers. This app sends the controller 

commands to the Beam’s normal controller app.  

Usage Scenario 

Amy is a design director in a motorcycle manufacturing 

company. She is in Seattle, USA, but she has 

teammates in Shanghai, China. With VROOM, she has a 

virtual ‘key to the door’ of the Shanghai studio, 

engaging with the office on her own timetable and 

without the need to organize meeting with a particular 

Shanghai colleague. Her colleagues, each wearing a 

HoloLens, can see her avatar present in any room, 

moving around the building, and if they call out when 

behind her, as she looks back over her shoulder in VR 

they can see her avatar’s head naturally back over its 

shoulder too. Amy can ‘walk’ around the studio to 

check project progress from team to team, hold a 1:1s 

in her manager’s office, and engage in ad hoc 

‘watercooler’ conversations with people she comes 

across. In a specific design session, a team shows 

several life size clay maquettes of new motorcycle 

designs. Amy and her colleagues are all able to move 

around the room discussing the designs, huddling 

around each model and pointing at various design 

elements. As people move, Amy is always able to know 

 

Figure 5: The avatar’s 

appearance is made from a 2D 

image of the remote user’s face. 

 

 

Figure 6: The remote user 

gesturing at a white board. 

a. Remote (VR) user’s action. b. 

Remote (VR) user’s view. c. Local 

(AR) user’s view. 



 

  

whether others are looking at her, where others are 

looking, and can also direct her attention to anything 

else in the room. At the end of the session, as everyone 

exits the room and returns to their desks, Amy 

continues conversations with a couple of colleagues on 

the move. At the end of that days’ visit, Amy docks the 

robot ready for another user. An hour later Red, who 

works in the Brisbane, Australia, office, calls into the 

robot and can move around like Amy. Although the 

robot itself is identical, all of Robert’s Shanghai 

colleagues are able to know it is him at a glance 

because they can see his avatar is different to Amy’s.  

Future Work 

We are interested in understanding how VROOM affects 

social and spatial presence for remote and local users. 

A future paper will report on an exploratory study 

comparing standard robotic telepresence with VROOM. 

Questions to be answered include: 

• How does VROOM affect users’ collaborative and 

social interactions, compared to standard robotic 

telepresence? 

• How do remote users make use of VROOM to 

explore and make sense of the environment? 

• How do local users understand and perceive the 

remote user while using VROOM? 

Although VROOM places a lot of value on access to 

shared physical reality in the local activity space, a 

shared virtual workspace (similar to [44]) would also be 

a very useful and straightforward addition. Both remote 

and local users should be able to spawn and use virtual 

objects (such as 3D models, documents, etc.) that 

could be pinned to locations in the real environment or 

decoupled from the physical environment as necessary.  

Although we only illustrated one local user and one 

remote user, VROOM might also be used in scenarios 

with multiple local and remote users. Scaling up the 

number of robots would be the largest expense, but as 

both VR and AR HMDs become cheaper and more 

comfortable the biggest issues may be logistical and 

organizational ROI. It would be also be interesting to 

consider whether two users could share one robot at 

once. More explorations can be done looking at how 

multiple users interact with each other, how to have 

multiple remote users see each other’s avatars, and 

how to reduce cost with cheaper robots. 

Finally, it might be also be interesting to consider more 

exotic asymmetrical immersion technologies, such as 

room-scale tracking and matching, treadmill 

locomotion, or 3D reconstructions of remote spaces. 

These would increase the complexity and cost of 

building a flexible system, but they would be valuable 

in considering how to increase the physical activity 

levels of remote users, and improve remote user’s 

sense of self-projection into local activity space. 

VROOM robots could also provide remote users with 

augmented capabilities (e.g. sensors for light outside 

the visible spectrum, RFID sensors etc.), which might 

have AR animated representations so that local users 

could know when a remote user was using them. 
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Figure 7: The remote user can 

express meaning with gazing and 

arm gestures. 

 

 

Figure 8: An earlier version of 

the robot setup with the marker 

pattern (bottom) and 360° 

camera (top). 
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